Supplementary Material For:

Benchmarks

Improved Native Isolation of Endogenous Protein A-Tagged Protein Complexes

John LaCava¹, Nagarajan Chandramouli², Hua Jiang¹, Michael P. Rout^{1*} ¹Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA and ²Proteomics Resource Center, The Rockefeller University, New York, NY, USA

BioTechniques 54:213-216 (April 2013) doi 10.2144/000114012 Keywords: native elution; competitive elution; Protein A; SpA; PrA; affinity isolation; affinity capture

S1: Peptide Synthesis and Purification

Novel peptides were synthesized by standard Fmoc solid-phase synthesis methods¹ using HATU as the coupling agent on a conventional automated synthesizer (Symphony, Protein Technologies) or alternatively using HBTU on a microwave peptide synthesizer (Liberty, CEM corp.). Incorporation of polyethylene glycol (PEG) spacers into the peptide sequence was accomplished using N-Fmoc-amido-(PEG)n-acid building blocks (Quanta Biodesign Inc.). Peptides were deprotected and cleaved from the resin with a TFA / triisopropyl silane / water / dioxa-1,8-octanethiol cleavage cocktail (25°C; 90 min). The cleaved peptides were precipitated in, and washed extensively with, t-butyl methyl ether. The dry crude peptides were cyclized (Cys-Cys disulfide) using Clear-OX polymer supported oxidant² (Peptide International). Typically the reduced peptides (40 mg) were dissolved in degassed 0.1 M ammonium acetate or bicarbonate / acetonitrile (1:1 v/v) at 5-6 mg/ml concentration. Each peptide solution was added to pre-swollen Clear-OX resin (200 mg; 0.2 mEg/g). The suspension was stirred for 2 hr at room temperature. Completion of the disulfide formation was confirmed by LC-ESI-MS analysis. The peptide was filtered and washed with a small volume of aqueous acetonitrile (50%). The solution was lyophilized and the cyclic peptide was purified by preparative HPLC (Dionex U3000). The cyclic peptide fractions were reanalyzed by analytical LC-MS (Waters Acquity UPLC coupled to Thermo-LTQ mass spectrometer) and then lyophilized.

1. Kates, S.A. and S.A.K.F. Albericio. 2000. Solid-Phase Synthesis. CRC Press.

2. Darlak, K., D. Wiegandt Long, A. Czerwinski, M. Darlak, F. Valenzuela, A.F. Spatola, and G. Barany. 2004. Facile preparation of disulfide-bridged peptides using the polymer-supported oxidant CLEAR-OX. The journal of peptide research : official journal of the American Peptide Society. 63:303–312.

Rockefeller University Proteomics Resource Center

	SAMPLE IN	FORMATIC	O N
Sample Name: Sample Type: Vial: Injection #: Injection Volume Run Time:	010R16-i20 Unknown 2:B,4 1 10.00 ul 12.0 Minutes	Acquired By: Sample Set Name Acq. Method Set: Processing Metho Channel Name: Proc. Chnl. Descr.	System AQ111019b Acq_Run_Met_60%step default2_1 ACQUITY TUV ChA ACQUITY TUV ChA 220nm
Date Acquired: Date Processed:	10/19/2011 3:51:21 PM EDT 10/20/2011 12:26:31 PM EDT		

Reported by User: System Report Method: Default Individual Repo Report Method I 1477 Page: 1 of 1 Project Name: peptide40 Date Printed: 10/20/2011 12:28:58 PM US/Eastern

20000-

0-

159.08

200

300.17 363.25

437.33

600

400

2000

1779.75

1780.75

1800

1733.67

1600

NL:

1000

m/z

1128.42

1200

1414.58

1400

689.92 880.50 905.00

800

.11

S2: Peptide solubility and binding competition

LaCava et al. Improved Native Isolation of Endogenous Protein A-tagged Protein Complexes

A: Initial attempts to resuspend lyophilized, PEG-modified FcIII peptide at final concentrations above 5 mM resulted in a large insoluble fraction and a final concentration in the hundreds-micromolar. This was observed in both HEPES buffered solution at pH 7.4 and Tris buffered solution at pH 8.0 - and was not resolved by extended incubation times - all indications are that an initial concentration of the peptide above 5mM has a deleterious effect on the final concentration. We found that resuspending lyophilized peptide at below 5 mM (typically 3 mM) in 40 mM Tris buffered solution at pH 8.0 with 100 mM NaCl, 0.01% (v/v) Tween 20, and 5% (v/v) ethanol provided for final concentrations of peptide solution at between 2 - 3 mM for PEGmodified FcIII peptide, depending on batch and precise buffer composition, and even extended the maximal solubility of Bio-Ox from the previously characterized 440 μ M¹ to ~1.2 mM achieved in this study. We found that Tris at 40 mM was required to ensure a final pH of 8.0 for the resuspended peptides – important for maximizing solubility¹. In all conditions tested, PEG-modified FcIII peptide exhibited at least double the solubility, greater retention of solubility at 4°C (table 1), and less precipitation on storage at -20°C (data not shown) as compared to Bio-Ox. See also file: FcIII_reagent_solubilities.xls.

RT	A280	A320	net	dilution	[mM]	avg.	
			A280	factor		[mM]	
Bio-Ox	0.27	0.007	0.263	50	1.18	1.18	
1756.3 Da	0.272	0.002	0.27	50	1.21		
	0.26	0.005	0.255	50	1.15		
PEG(4)	0.628	0.006	0.622	50	2.80	2.73	
1776.3 Da	0.585	-0.001	0.586	50	2.63		
	0.621	0.004	0.617	50	2.77		
R-PEG(4)	0.534	0.007	0.527	50	2.37	2.36	
1932.88 Da	0.519	0.008	0.511	50	2.30		
	0.543	0.009	0.534	50	2.40		
4*C	A280	A320	net	dilution	[mM]	avg.	%
4*C	A280	A320	net A280	dilution factor	[mM]	avg. [mM]	% 4°C / RT
4*C Bio-Ox	A280 0.209	A320 0.006	net A280 0.203	dilution factor 50	[mM] 0.91	avg. [mM] 0.86	% 4°C / RT 72%
4*C Bio-Ox	A280 0.209 0.192	A320 0.006 0.005	net A280 0.203 0.187	dilution factor 50 50	[mM] 0.91 0.84	avg. [mM] 0.86	% 4°C / RT 72%
4*C Bio-Ox	A280 0.209 0.192 0.186	A320 0.006 0.005 0.005	net A280 0.203 0.187 0.181	dilution factor 50 50 50	[mM] 0.91 0.84 0.81	avg. [mM] 0.86	% 4°C / RT 72%
4*C <i>Bio-Ox</i> <i>PEG(4)</i>	A280 0.209 0.192 0.186 0.568	A320 0.006 0.005 0.005 0.005	net A280 0.203 0.187 0.181 0.563	dilution factor 50 50 50 50	[mM] 0.91 0.84 0.81 2.53	avg. [mM] 0.86 2.55	% 4°C / RT 72% 93%
4*C <i>Bio-Ox</i> <i>PEG(4)</i>	A280 0.209 0.192 0.186 0.568 0.547	A320 0.006 0.005 0.005 0.005 0.004	net A280 0.203 0.187 0.181 0.563 0.543	dilution factor 50 50 50 50 50	[mM] 0.91 0.84 0.81 2.53 2.44	avg. [mM] 0.86 2.55	% 4°C / RT 72% 93%
4*C <i>Bio-Ox</i> <i>PEG(4)</i>	A280 0.209 0.192 0.186 0.568 0.547 0.598	A320 0.006 0.005 0.005 0.005 0.004 0.004	net A280 0.203 0.187 0.181 0.563 0.543 0.594	dilution factor 50 50 50 50 50 50	[mM] 0.91 0.84 0.81 2.53 2.44 2.67	avg. [mM] 0.86 2.55	% 4°C / RT 72% 93%
4*C <i>Bio-Ox</i> <i>PEG(4)</i> <i>R-PEG(4)</i>	A280 0.209 0.192 0.186 0.568 0.547 0.598 0.508	A320 0.006 0.005 0.005 0.005 0.004 0.004 0.007	net A280 0.203 0.187 0.181 0.563 0.543 0.594 0.501	dilution factor 50 50 50 50 50 50 50	[mM] 0.91 0.84 0.81 2.53 2.44 2.67 2.25	avg. [mM] 0.86 2.55 2.22	% 4°C / RT 72% 93% 93%
4*C Bio-Ox PEG(4) R-PEG(4)	A280 0.209 0.192 0.186 0.568 0.547 0.598 0.508 0.515	A320 0.006 0.005 0.005 0.005 0.004 0.004 0.007 0.007	net A280 0.203 0.187 0.181 0.563 0.543 0.594 0.501 0.508	dilution factor 50 50 50 50 50 50 50 50 50	[mM] 0.91 0.84 0.81 2.53 2.44 2.67 2.25 2.28	avg. [mM] 0.86 2.55 2.22	% 4°C / RT 72% 93% 93%

Table 1 - Fclll-based reagent solubilities (Figure 1B, main text): Three reagents were compared for solubility - the original Bio-Ox reagent¹, FcIII peptide containing an N-terminal 4-repeat polyethylene glycol moiety (PEG[4], this study), and FcIII peptide containing an N-terminal arginine and 4-repeat polyethylene glycol moiety (R-PEG[4], this study). The molar extinction coefficient at 280 nm wavelength for all three reagents (ɛ₂₈₀ M⁻¹cm⁻¹) was estimated as 11125 M⁻¹cm⁻¹, based on the presence of two tryptophan residues and one cystine². Three lyophilized aliquots of each reagent were resuspended at an intended final concentration of 5 mM (molecular mass shown below the reagent name) in the aforementioned Tris buffered solution at pH 8.0, also containing 1 mM EDTA. All samples were mixed using a vortex mixer, and centrifuged for 5 min at room temperature (RT) at full speed (14k RPM) in an Eppendorf 5417R microfuge. The supernatants were removed and readings of each reagent were made by UV spectrophotometry at 280 nm with simple background subtraction at 320 nm. The remainders of the samples were left overnight at 4°C, and the supernatants were assayed again after the samples were centrifuged, as previously. PEG[4] modified FcIII showed the greatest solubility at RT or 4°C and was carried forward as "PEGylOx." On the basis of these results, and in order maximize reagent, subsequent resuspensions of lyophilized peptide were carried out at 3 mM intended final concentration. Although similar solubility was observed for PEG[6] and PEG[8] (as for PEG[4]) modified FcIII peptides, both of these species exhibited an observable tendency to crash out of solution when held at below 4°C (data not shown) and were not carried forward.

B: To asses that the function of PEGylOx as a competitive elution reagent has not

been compromised by the PEG[4] moiety (as compared to Bio-Ox), its half maximal inhibitory concentration (IC₅₀) against wt S. aureus Protein A (SpA) was assessed and compared to that of Bio-Ox; shown in figure 1C, main text. See also file: IC50.xls. In this experiment, PEGyIOx and Bio-Ox were compared against one another for ability to competitively displace SpA from SpA saturated IgG Dynabeads. Rabbit polyclonal IgGconjugated Dynabeads (See http://www.ncdir.org/public-resources/protocols/) were incubated with SpA (Sigma-Aldrich #P7837; 165 µl of Dynabeads slurry and 165 µg SpA were incubated in 1 ml volume) in 20mM Tris pH 8.0, 100mM NaCl, 0.01% (v/v) Tween, 1mM EDTA, 5% v/v ethanol for 2 hr at 4°C with mixing. After SpA binding, the beads were washed two times with 1 ml of the binding solution without SpA and then resuspended in 1.65 ml of the same solution and thirty 50 µl aliquots were made (containing the equivalent of 5 µl of IgG beads slurry per 50 µl aliquot). Finally, solutions of Bio-Ox or PEGylOx were added to these aliquots, respectively, over a range of concentrations in 25 µl volume and incubated for 1 hr at RT. Bio-Ox was prepared at 10, 50, 100, 300, 500, and 900 μ M; PEGylOx was prepared at the same and 2.2 mM as well; all displacement reactions were prepared in duplicate. A buffer only sample was also prepared in quadruplicate. The supernatants were collected to obtain the released fraction of SpA, and the beads were subsequently washed with 25 µl of 1X LDS loading buffer to remove the remaining bound fraction of SpA. 13 µl of each solution were loaded on SDS page gels, Coomassie stained, and the resulting images analyzed for the amount of SpA retained in each competitive displacement experiment (e.g. the fractional amount of SpA in the final LDS wash compared the total SpA in the reagent

elution plus the LDS wash – described in **S3**, below). Experimental replicates were averaged. The IC₅₀ was calculated for both reagents based on the slope and y-intercept of the resulting lines plotted using a logarithmic fit. Both Bio-Ox and PEGylOx have substantially similar IC₅₀ values, calculated at 159 and 166 μ M respectively. We conclude that the affinity of PEGylOx for IgG, as compared to Bio-Ox, has not been diminished by the incorporation of the PEG[4] moiety and that the mechanism of competitive displacement of SpA (Fc binding) has been retained.

C: To determine the effect of the time of incubation on competitive displacement of SpA from IgG by PEGylOx, we incubated SpA saturated IgG Dynabeads with a saturated solution of PEGylOx for 5, 15, 30, or 60 min. The results are depicted in figure 1D, main text. As in **B** (above), rabbit polyclonal IgG-conjugated Dynabeads were incubated with SpA in 20mM Tris pH 8.0, 100mM NaCl, 0.01% (v/v) Tween, 1mM EDTA, 5% v/v ethanol. 66 µl of IgG beads slurry was combined with 66 µg SpA in 500 µl volume and incubated 1 hr at 4°C. The beads were washed twice and then resuspended in 660 µl and twelve 50 µl aliquots were dispensed (containing 5 µl Dynabeads slurry equivalent). To each aliquot, 10 µl of saturated PEGylOx solution (~2.5 mM) were added for the specified length of time, in triplicate. After the time period elapsed the supernatant was removed and combined with LDS loading buffer, and the beads were washed with 15 µl 1x LDS loading buffer (10 min at RT) to remove the remaining SpA. All samples were analyzed and quantified as in **B** (above), described in **S3** (below). The results indicate that ~70 - 75% of SpA can be competitively eluted from

www.BioTechniques.com

IgG Dynabeads within 15 min, using a saturated solution of PEGylOx. See also file: POx_SpA_elution_time.xls.

Strambio-de-Castillia, C., J. Tetenbaum-Novatt, B.S. Imai, B.T. Chait, and M.P.
 Rout. 2005. A method for the rapid and efficient elution of native affinity-purified protein
 A tagged complexes. Journal of proteome research. 4:2250–2256.

2. Grimsley, G.R. and C.N. Pace. 2004. Spectrophotometric determination of protein concentration. p. 3.1. In G. Taylor (Eds.), Current Protocols in Protein Science. Wiley.

S3: Image quantitation and analysis

LaCava et al. Improved Native Isolation of Endogenous Protein A-tagged Protein Complexes

All quantitative image analysis was carried out using the FujiFilm Multi Gauge v3.0 software and Microsoft Excel 2008. In all cases, bands of interest from gels were manually specified for intensity analysis within the Multi Gauge software. Equivalent regions of equal size were specified in blank regions of the gel for background subtraction. BSA standards were included for quantity calibration, typically at 100 and 400 ng bands in two separate lanes. All quantitative comparisons were carried out on normalized, calibrated measurements. An example image in processing (figure 1) and Multi Gauge readout (table 1) are provided below. Selected data from Multi Gauge generated files were transferred to Microsoft Excel for arithmetic, statistics and graphing. Two types of measurements were typically conducted: percent released and percent retained. "Percent released" assays express the intensity of a band measured in an elution fraction as a percentage of the total measured intensity (the sum of the intensities of both the eluted and retained fraction) - these were typically carried out to asses how much of a bait protein was obtained from the capture beads after treatment with elution peptide. "Percent retained" assays express the intensity of a band measured in a retained fraction as a percentage of the total measured intensity - these were typically carried out to asses how much wt SpA protein was retained on beads

II

after treatment with elution peptide. Retained fractions were obtained by washing with LDS loading buffer (2% lithium dodecylsulfate) which quantitatively interferes with the SpA / IgG interaction. All the Excel spreadsheets used to analyze Multi Gauge data presented here are included as supplemental data - these include a large degree of the raw data output from Multi Gauge (see file: Quant_BOx_POx_elution.xls). All original raw data are available in the original file formats on request.

Figure 1 - Image processing and measurement in Multi Guage: This gel corresponds to the experiment carried out to measure the displacement of wt SpA from IgG Dynabeads with PEGylOx (detailed in **S2**, above). The blue boxes are drawn around the eluted SpA fractions (1 - 4, blue; PEGylOx can be seen at the bottom of the

gel) and the retained SpA fractions (5 – 8, blue). Boxes 9 and 10 (green) are BSA quantity standards. The remaining boxes (purple) are clustered in a "blank" region at the bottom of the gel and correspond in area to boxes drawn around samples and quantity standards to precisely subtract background from each measured signal.

Çhanne l	No	Group	Index	Name	AU	Area(mm	2)	AU-BG	в	BG	Std	Ratio(%)	(A-B)/m	m2 Co	librated
1	1	A	1		94026437	.00	13.69	1302310	7.00		8100333	3.00		16.09	951018.02	182.62
1	2	A	2		95898689	.00	13.69	1489535	9.00		8100333	0.00		18.40	1087740.03	3 208.87
1	3	A	3		97507435	.00	13.69	1650410	15.00		8100333	0.00		20.39	1205219.40	231.43
1	4	A	4		97876200	.00	13.69	1687287	0.00		8100333	0.00		20.84	1232148.63	3 236.60
1	5	A	5		87271272	.00	13.69	6267942	2.00		8100333	0.00		7.74	457719.17	87.89
1	6	A	6		86558103	.00	13.69	5554773	.00		8100333	0.00		6.86	405639.70	77.89
1	7	A	7		85328077	.00	13.69	4324747	.00		8100333	0.00		5.34	315816.52	60.64
1	8	A	8		84505863	.00	13.69	3502533	.00		8100333	0.00		4.33	255773.99	49.11
1	11	A	9		81003330	.00	13.69	0.00	В	81003330	3.00			0.00	0.00	
1	9	В	1		88913850	.00	12.94	1238978	4.00		7652406	5.00	S	100.00	957769.95	100.00
1	12	В	2		76524066	.00	12.94	0.00	В	76524066	5.00			0.00	0.00	
1	10	С	1		12214035	5.00	16.25	2602195	5.00		9611840	0.00	S	100.00	1601148.81	400.00
1	13	С	2		96118400	.00	16.25	0.00	В	96118400	3.00			0.00	0.00	

Table 1 - Multi Gauge output: A standard tabulated data output from Multi Gauge is shown, this one corresponding to the image above - a single replicate in the aforementioned experiment. The calibrated data in the far right column would be used for combining with other experimental replicates, statistics, and graphing. For each region of a given size specified to measure a signal [groups A (eluted or retained signal, boxes 1 - 8), B (100 ng BSA standard, box 9), and C (400 ng BSA standard, box 10)] an according, equal sized background region is specified for subtraction (No. 11, 12, & 13 in the table above).

www.BioTechniques.com

S4: SpA-tag Supplement

LaCava et al. Improved Native Isolation of Endogenous Protein A-tagged Protein Complexes

A: Both the Rout and Landick SpA-tags are based on the wt SpA sequence (sequence alignment shown below). The Rout tag SpA-tag¹⁻³ was used for C-terminal SpA-tagging of Nup53, Nup1p³ and Psf2p⁴. The Landick SpA-tag⁶ was introduced Cterminally in the *rpoC* gene as previously described^{7,8}. Gray bars over the wt SpA sequence shown in the alignment (UniProt: P38507, SPA STAAU) indicate the positions of consecutive IgG binding domains: E, D, A, B and C respectively^{1,5}. As shown in the SpA-tag alignment below (fig. 1, also included as a Clustal file: SpA-tag alignment.aln), although there are some differences in the primary sequences, both the Rout and the Landick SpA-tags encompass a small C-terminal portion of domain E, all of domains D, A, & B, and a large N-terminal portion of domain C. Hence, these tags comprise 3 complete SpA IgG-binding domains, as well as flanking sequence of neighboring domains. In contrast the TAP-tag is based on two tandem repeats of the synthetic SpA-derived Z-domain⁹⁻¹². These Z-domains are indicated as grav bars over the "ZZ from TAP-tag" sequence shown in the alignment. This is the SpA sequence that can be found in the large-scale TAP-tagging projects^{12,13}.

The expected primary protein sequence for Nup1p-SpA was determined by Sanger DNA sequencing (<u>www.genewiz.com</u>) of the PCR amplified¹⁴ gene from genomic DNA

I4

extracted¹⁵ from the *NUP1::spa* strain. The *NUP1::spa* gene sequence was determined across the entire CDS and found to contain a point mutation, 580A>T in the *spa* sequence relative to that expected of the Rout lab SpA-tag, resulting in a premature stop codon and truncating 36 amino acids from the expected C-terminal of the SpA-tag (fig. 2, and included files: Nup1_CDS_contig.ace, SpA_seq.ace, Nup1-SpA.gbk, & Nup1-SpA vs SpA alignment.aln). This gene should produce a protein of ~135.3 kDa, based on primary sequence, whose *NUP1* CDS is identical to that annotated in GenBank M33632.1:1001..4231.

Figure 1

		20 		40		60 I		80.	
S.aureus protein A (SPA_STAAU)	MKKKNIYSIR	KLGVGIASVT	LG <mark>T L L I S</mark> GGV	T PAANAAQHD	EAQQNAFYQV	LNMPNLNADQ	RNGFIQSLKD	DPSQSANVLG	80
Rout SpA-tag								G	1
Landick SpA-tag	L								1
ZZ from TAP-tag									-
Consensus 100% Conservation								G	
4.3bits Sequence logo									
0.0bits			LGTLLISGGV	TPAANAAQHD	EAQQNAFYQV	LNMPNLNADQ 140	RNGFIQSLKD	DPSQSANVL	
S.aureus protein A (SPA_STAAU)	EAQKENDSQA	PKADAQQNKF	NKDQQSAFYE		QRNGFIQ <mark>SL</mark> K	DDPSQSTNVL	GEAKKLNESQ	A PKADNNFNK	160
Rout SpA-tag	EAQKENDSQA	PKADAQQNNF	NKDQQSAFYE	ILNMPNLNEA	QRNGFIQSLK	DDPSQSTNVL	G <mark>eakklnesq</mark>	A PKADNNENK	81
Landick SpA-tag	<mark>DKLPRD</mark> RW	LEADAQQNNF	NKDQQSAFY <mark>E</mark>	I L <mark>NMPN LN E</mark> A	QRNGFIQ <mark>SL</mark> K	DDP SQ ST NV L	G <mark>eakklnesq</mark>	A PKADNN FNK	79
ZZ from TAP-tag								V <mark>D</mark> NKFNK	7
Consensus 100%		PKADAQQNNF	NKDQQSAFYE		QRNGFIQSLK	DDPSQSTNVL	GEAKKLNESQ	APKADNNFNK	
4.3bits Sequence logo									
0.0bits	EAQNLŃDSQA		NKDQQSAFTE		UKNGFIQSLK		GEAKKLNESQ		
S.aureus protein A (SPA_STAAU)	EQQNAFYEIL	NMPNLNEEQR	NGFIQSLKDD	PSQSANLLAE	AKKLNESQAP	KADNKFNKEQ	QNA FY EILHL	PNLNEEQRNG	240
Rout SpA-tag	EQQNAFYEIL	NM PN LN E EQR	NGFIQSLKDD	P SQ SAN L L SE	A <mark>kkl</mark> n e sqap	KADNKFNKEQ	QNA FY EILHL	PNLNEEQRNG	161
Landick SpA-tag	EQQNAFYEIL	NM PN LN E EQR	NGFIQSLKDD	P <mark>S Q S</mark> A N L L S E	A <mark>kkl</mark> n e sqap	KADNKENKEQ	QNA FY EILHL	PNLNEEQRNG	159
ZZ from TAP-tag	EQQNAFYEIL	HL PNLNEEQR	NAFIQSLKDD	P SQ SANLLAE	AKKLNDAQA P	KVDNKFNKEQ	QNAFYEILHL	PNLNEEQRNA	87
Consensus	EQQNAFYEIL	NMPNLNEEQR	NGFIQSLKDD	PSQSANLLXE	AKKLNESQAP	KADNKFNKEQ	QNAFYEILHL	PNLNEEQRNG	
Conservation 4.3bits		BADNI NEEAD							
Sequence logo 0.0bits	EQUINALIET		NCLIASTVAN		ANNLNESVAP		QNAFICILI		
S.aureus protein A (SPA_STAAU)	FIQSLKDDPS	QSANLLA EAK	KLNDAQAPKA	DNKFNKEQQN	AFYEILHLPN		QSEKDDPSVS	KEILAEAKKL	320
Rout SpA-tag	FIQSLKDDPS	QSANLLA EAK	K LNDAQAPKA	DNK FNK EQQN	A FYEILHLPN	LTEE <mark>QRN</mark> GFI	QS LKDD		227
Landick SpA-tag	FIQSLKDDPS	QSANLLA EAK		DNK FNK EQQN	A FYEILHLPN	LTEE <mark>QRN</mark> GFI	Q S L K D D P G <mark>N S</mark>	RG <mark>SLK</mark>	234
ZZ from TAP-tag	FIQSLKDDPS	Q SANLLA EAK	KLNGAQAPK-						116
Consensus 100% Conservation	FIQSEKDDPS	QSANLLAEAK	K L NDAQAPKA	DNKFNKEQQN					
4.3bits Sequence logo		OSANI LA FAK	KINSANADKA						
0.0bits					AFICILILITY		QJTVDh802	ξες Γξεακκι 400	
S.aureus protein A (SPA_STAAU)	NDAQAPKEED	NNKPGKEDGN	K PGK EDGNK P	G <mark>ked</mark> nkkpgk	ED G <mark>NK</mark> PG <mark>KED</mark>	NKK PGK ED GN	KPG <mark>KED</mark> GNKP	GKEDGNKPGK	400
Rout SpA-tag									227
Landick SpA-tag									234
ZZ from TAP-tag									116
Consensus 100% Conservation									
4.3bits Sequence logo									
0.0bits	NDAQAPKEED	NNKPGKEDGN 420	K P G K E D G N K P	GKEDNKKPGK 440	EDGNKPGKED	NKKPGKEDGN 460	KPGKEDGNKP	GKEDGNKPGK 480	
S.aureus protein A (SPA_STAAU)	EDG <mark>NK</mark> PG <mark>K</mark> ED	G <mark>N</mark> G <mark>VHVVKP</mark> G	DT VNDI AKAN	GTTADKIAAD	NKLA <mark>dknmik</mark>	PGQELVVDKK	QPANHADANK	AQALPETGEE	480
Rout SpA-tag									227
Landick SpA-tag									234
ZZ from TAP-tag									116
Consensus 100% Conservation									
4.3bits Sequence logo									
0.0bits	EDGNKPGKED	GNGVHVVKPG	DTVNDIAKAN	GTTADKIAAD	NKLADKNMIK	PGQELVVDKK	QPANHADANK	AQALPETGEE	
S.aureus protein A (SPA_STAAU)	NPFIGTTVFG	G ls lalgaal	LAGRRREL 50	8					
Rout SpA-tag			- AG 22	9					
Landick SpA-tag			23	4					
ZZ from TAP-tag			11	6					
Consensus 100% Conservation			-AG						
% 4.3bits Sequence logo									
0.0bits	NPFIGTTVFG	GLSLALGAAL	LAURRREL						

B: Nup53-SpA³ (containing a multi-domain fragment of wt SpA) and Nup53-TAP¹² (synthetic, IgG-binding Z-domain; both discussed in **A**, above) were compared for total yield in affinity capture and efficiency of native elution using PEGylOx (fig. 3, below – procedure as described in fig. 2 of the main text and the online protocol).

Nup53p-SpA input; (2) Nup53p-SpA supernatant; (3) Nup53p-TAP input; (4) Nup53p-TAP supernatant. Transfer of proteins to the support membrane and HRP detection of SpA/TAP-tagged Nup53p carried out using standard procedures, PAP antibody complex (Sigma-Aldrich #P1291) at 1:5000 and Lumi-Light substrate (Roche #12015200001).

Comparing Nup53p-SpA eluted and retained fractions (lanes 1 vs. 3) to Nup53p-TAP eluted and retained fractions (lanes 2 vs. 4) in the gel shown at left, above, illustrates that PEGyIOx releases the Nup53p/Nup170p dimer to roughly comparable efficacy in both cases. However, the yield in the Nup53p-SpA eluted fraction (lane 1) is significantly higher than the Nup53p-TAP eluted fraction (lane 2); and the combined yields (eluted plus retained fractions for each tagged protein [lanes 1+3 and 2+4], respectively) exhibit the same trend – indicating that more Nup53-SpA was captured, in total, from the cell extract than Nup53-TAP. This conclusion is further supported by the western blot shown above at right: Nup53p-SpA is noticeably depleted (lane 1 vs. 2), whereas Nup53-TAP is not (lane 3 vs. 4). These results are compatible with the SpA tag based on wt sequence being either of higher affinity through avidity effects or simply more accessible on account of its size and number of exposed IgG-binding repeats.

www.BioTechniques.com

1. **Uhlén, M., B. Guss, B. Nilsson, S. Gatenbeck, L. Philipson, and M. Lindberg**. 1984. Complete Sequence of the Staphylococcal Gene Encoding Protein-a - a Gene Evolved Through Multiple Duplications. The Journal of biological chemistry. 259:1695–1702.

2. **Aitchison, J.D., M.P. Rout, M. Marelli, G. Blobel, and R.W. Wozniak**. 1995. Two novel related yeast nucleoporins Nup170p and Nup157p: complementation with the vertebrate homologue Nup155p and functional interactions with the yeast nuclear pore-membrane protein Pom152p. The Journal of cell biology. 131:1133–1148.

3. Rout, M.P., J.D. Aitchison, A. Suprapto, K. Hjertaas, Y. Zhao, and B.T. Chait. 2000. The yeast nuclear pore complex: composition, architecture, and transport mechanism. The Journal of cell biology. 148:635–651.

4. Sekedat, M.D., D. Fenyö, R.S. Rogers, A.J. Tackett, J.D. Aitchison, and B.T. Chait. 2010. GINS motion reveals replication fork progression is remarkably uniform throughout the yeast genome. Molecular systems biology. 6:353.

5. Moks, T., L. Abrahmsén, B. Nilsson, U. Hellman, J. Sjöquist, and M. Uhlén. 1986. Staphylococcal protein A consists of five IgG-binding domains. European Journal Of Biochemistry. 156:637–643.

6. **Tavormina, P.L., R. Landick, and C.A. Gross**. 1996. Isolation, purification, and in vitro characterization of recessive-lethal-mutant RNA polymerases from Escherichia coli. Journal of bacteriology. 178:5263–5271.

7. **Mooney, R.A. and R. Landick**. 2003. Tethering sigma70 to RNA polymerase reveals high in vivo activity of sigma factors and sigma70-dependent pausing at promoter-distal locations. Genes & development. 17:2839–2851.

8. **Tolić-Nørrelykke, S.F., A.M. Engh, R. Landick, and J. Gelles**. 2004. Diversity in the rates of transcript elongation by single RNA polymerase molecules. The Journal of biological chemistry. 279:3292–3299.

9. Nilsson, B., T. Moks, B. Jansson, L. Abrahmsén, A. Elmblad, E. Holmgren, C. Henrichson, T.A. Jones, and M. Uhlén. 1987. A synthetic IgG-binding domain based on staphylococcal protein A. Protein engineering. 1:107–113.

10. **Rigaut, G., A. Shevchenko, B. Rutz, M. Wilm, M. Mann, and B. Seraphin**. 1999. A generic protein purification method for protein complex characterization and proteome exploration. Nature biotechnology. 17:1030–1032.

11. Puig, O., F. Caspary, G. Rigaut, B. Rutz, E. Bouveret, E. Bragado-Nilsson, M. Wilm, and B. Séraphin. 2001. The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods. 24:218–229.

12. Ghaemmaghami, S., W.-K. Huh, K. Bower, R.W. Howson, A. Belle, N. Dephoure, E.K. O'Shea, and J.S. Weissman. 2003. Global analysis of protein expression in yeast. Nature. 425:737–741.

13. Gavin, A.-C., P. Aloy, P. Grandi, R. Krause, M. Boesche, M. Marzioch, C. Rau, L.J. Jensen, S. Bastuck, B. Dümpelfeld, et al. 2006. Proteome survey reveals modularity of the yeast cell machinery. Nature. 440:631–636.

14. Korbie, D.J. and J.S. Mattick. 2008. Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nature protocols. 3:1452–1456.

15. **Hanna, M. and W. Xiao**. 2006. Isolation of nucleic acids. p. 15–20. In W. Xiao (Ed.), Methods in Molecular Biology. Humana Press.

S5: PEGylOx removal by spin column gel filtration

LaCava et al. Improved Native Isolation of Endogenous Protein A-tagged Protein Complexes

PEGylOx was tested for depletion from solution by spin column gel filtration. The results are given in table 1, below. We compared Bio-Rad Bio-Gel P-6 (P6) with Bio-Rad Bio-Gel P-30 (P30) and Thermo Zeba 40k MWCO (Z40k) media. P30 and Z40k gave roughly equivalent results within the limits of our assay. We also tested Thermo Zeba 7k MWCO (Z7k), which gave results comparable to P6 (data not shown). All indications are that gel media with low molecular weight cutoff (e.g. 6 - 7 kDa in the case of P6 and Z7k) deplete PEGylOx only poorly, whereas those of higher molecular weight cutoff (e.g. 40 kDa for both P30 and Z40k) deplete peptide very well. Our assay was carried out by monitoring UV280 absorbance (A280) on a Beckman DU730 spectrophotometer using a 100 µl quartz cuvette. For theoretical and technical reasons, spectrophotometry used in this manner has a rather narrow linear dynamic range; typically assay readings should be held stringently (by dilution or concentration) to between ~0.2 – 0.7 AU for highest accuracy (~3-fold range). In practice a functional range of ~0.05 - 1.0 AU (~20-fold range) provides for useful estimations of protein abundance. Therefore our spectrophotometric assay can suffer from inaccuracy in the reading of both high concentration and highly depleted samples. To analyze pre- and post-column samples at the same dilution requires that the input sample be highly

concentrated, so as to be out of the linear dynamic range on the high side; but this works reasonably well for estimating e.g. PEGylOx depletion by P6, which leaves enough peptide in the eluted fraction to fall within functional detection range. Depletion with P30 and Z40k always reduced peptide levels to below those reasonable for accurate detection – and thus was outside of our ability to precisely assess by this assay. Our estimation based on the numbers we did obtain is indicative of better than 100-fold depletion of PEGylOx by P30 and Z40k media. Although UV is not the best assay, it provides a means for quick, rough checks on e.g. the reproducibility of spin column depletion and the behavior of PEGylOx with respect to depletion over columns equilibrated with different buffers (as buffer exchange of the protein complex of interest with simultaneous quantitative depletion of PEGylOx prior to downstream analysis is of great value). We have noticed (and this is reflected in table 1 for the two P6 readings) that there can be some column-to-column variability in the depletion results depending on e.g. how the resin bed settles during initial equilibration. Care must be taken to follow the manufacturer's specifications and settle the bed uniformly for best results. This may have been less apparent with P30 and Z40k because depletion, even with high % variability, was always below the accurate detection limit of our instrument. In order to convince ourselves that the depletion with was as good as it seemed by UV280, we analyzed a series of natively eluted experimental samples, including peptide depletion by spin column gel filtration, by SDS-PAGE and Coomassie staining (fig. 1, below).

www.BioTechniques.com

Table 1.

PEGylOx	<u>net A280</u>	dil. Factor	tot. A280	avg.	Δ			<u>avg. Δ</u>	
Pre	1.341	20	26.82	26.45	n/a		P6	17	
	1.304	20	26.08						
Post P6	0.32	20	6.4	6.33	4.18		P30	214	
	0.313	20	6.26						
						_	Z40k	135	
Pre	1.447	20	28.94	28.99	n/a	Table 1 Dr			
	1.452	20	29.04					etion by spin	EET) Four independent
Post P6	0.051	20	1.02	0.99	29.28	A legend is p	present below	w the table. (L	EFT) Four independent
	0.048	20	0.96			all camples f	for that corior	Each roadin	a within each series was
Post P30	0.007	20	0.14	0.15	193.27	made in dur	licate from a	sinale evner	imental source sample:
	0.008	20	0.16			replicate rea	dings are gr	ouned with th	ne sample type (Pre. Post P6.
Post Z40k	0.013	20	0.26	0.27	107.37	Post P30, an	d Post Z40k)	and means w	vere taken for the total A280
	0.014	20	0.28			of each repli	icate series a	fter dilution. F	Pre-column samples (i.e.
						_ saturated PE	GylOx stock	solutions) we	re analyzed directly at the
Pre	0.549	50	27.45	27.075	n/a	given dilutio	on in 40 mM ⁻	Tris buffered s	solution at pH 8.0 with 100 mM
	0.534	50	26.7			NaCl and 0.0	01% (v/v) Twe	en 20. For sa	mples applied to P6 and P30
Post P30	0.007	10	0.071	0.0855	316.67	media, 26 µl	of stock wer	e first applied	to the spin column,
	0.010	10	0.1			pre-equilibr	ated with the	e Tris buffered	l solution mentioned, and then
Post Z40k	0.007	20	0.14	0.12	225.63	subsequent	ly read at the	given dilutio	n. For samples applied to the
	0.005	20	0.1			Z40k mediu	m, 13 µl of st	ock were first	applied to the pre-
						equilibrated	spin column	h, and then su	bsequently read at the given
Pre	2.452	20	49.04	49.3	n/a	table (PICH	tola-aepleti	lon for each c	olumn type is given in the
	2.478	20	49.56			fold-doploti	on observed	for each colu	mp-type
Post P30	0.02	20	0.4	0.37	133.24	iona depieti	on observed		init type.
	0.017	20	0.34						
Post Z40k	0.033	20	0.66	0.68	72.5				
	0.035	20	0.7						

Legend - PEGyIOx: Pre (A280 of PEGyIOx stock solution), Post (A280 of spin column flow-through), P6, P30, Z40k (different media, as in text); net A280: A280 \underline{h} \underline{h} \underline replicates.

Vol. 54 | No. 4 | 2013

Μ

250

150

100

75

50

37

25 20

15 10 ctrl

P30

100 200 400

Ctf4p

50

ctrl

Tris buffered solution at pH 8.0 with Psf2p-SpA 100 mM NaCl and 0.01% (v/v) SId5p Tween 20. BSA is present in the ----Psf1/3p right most lanes at 50 ng and 200 ng. (BOTTOM) Peptide removal trials PEGylOx

PEGylOx

from Psf2p-SpA affinity purifications utilizing 1 g of grindate eluted in 10 µl saturated PEGylOx solution, then either loaded directly on the gel (ctrl) or gel filtered through a

utilizing 0.5 g of grindate eluted in 10 µl saturated PEGylOx solution, then either loaded directly on the gel (control - ctrl) or gel filtered through a Z40k or through a P30 (an additional 10 µl of buffer added to the sample to accommodate the loading requrements of P30 micro bio-spin columns). In both cases the columns were pre-equilibrated with 40 mM

affinity

BSA Z40k Figure 1 – PEGylOx depletion by spin column gel filtration with Nup1p-SpA simultaneous Kap95p (TOP) Peptide removal trials from Nup1p-SpA Kap60p

buffer exchange:

purifications

Z40k. Each Z40k was equilibrated with a different concentration of ammonium acetate solution from 50 - 400 mM (as indicated). In both TOP and BOTTOM PEGylOx was quantitatively removed to below the limit of detection by our colloidal Coomassie blue stain (~1 ng)¹ – commensurate with a drastic reduction in PEGylOx, as previously determined by UV280 spectrophotmetry.

1. Candiano, G., M. Bruschi, L. Musante, L. Santucci, G.M. Ghiggeri, B. Carnemolla, P. Orecchia, L. Zardi, and P.G. Righetti. 2004. Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis. 25:1327–1333.